Деление натуральных чисел столбиком: правило, примеры

Скачать карточки

В качестве домашнего математического тренажера используйте карточки с примерами. В них включайте разные случаи: с однозначными и многозначными числами, с нулями, деление с полным результатом и остатком. Скачать карточки можно бесплатно. Раздаточный материал обязательно следует напечатать для проверочной работы.

Ошибки с делением у детей в начальной школе встречаются довольно часто. Уделите этой теме максимум внимания и времени, чтобы усвоение последующего материала проходило без запинок. Используйте карточки, видеоуроки, постоянную тренировку навыка и повторение пройденных тем и правил в игровой форме. Тогда домашние уроки не навеют на ребенку скуку и пройдут с максимальной пользой.

Понравился наш контент? Подпишитесь на канал в .

Основы деления десятичных дробей

Все десятичные дроби, как конечные, так и периодические, представляют из себя всего лишь особую форму записи обыкновенных дробей. Следовательно, на них распространяются те же принципы, что и на соответствующие им обыкновенные дроби. Таким образом, весь процесс деления десятичных дробей мы сводим к замене их на обыкновенные с последующим вычислением уже известными нам способами. Возьмем конкретный пример.

Пример 1

Разделите 1,2 на ,48.

Решение

Запишем десятичные дроби в виде обыкновенных. У нас получится:

1,2=1210=65

,48=48100=1225.

Таким образом, нам надо разделить 65 на 1225. Считаем:

1,2,48=621225=65·2512=6·255·12=52

Из получившейся в итоге неправильной дроби можно выделить целую часть и получить смешанное число 212, а можно представить ее в виде десятичной дроби, чтобы она соответствовала исходным цифрам: 52=2,5. О том, как это сделать, мы уже писали ранее.

Ответ: 1,2,48=2,5. 

Пример 2

Посчитайте, сколько будет ,(504),56.

Решение

Для начала нам нужно перевести периодическую десятичную дробь в обыкновенную.

,(504)=,5041-,001=,504,999=504999=56111

После этого конечную десятичную дробь также переведем в другой вид: ,56=56100. Теперь у нас есть два числа, с которыми нам будет легко провести необходимые вычисления:

,(504)1,11=5611156100=56111·10056=100111

У нас получился результат, который мы также можем перевести в десятичный вид. Для этого разделим числитель на знаменатель, используя метод столбика:

Ответ: ,(504),56=,(900). 

Если же в примере на деление нам встретились непериодические десятичные дроби, то мы будем действовать немного иначе. Мы не можем их привести к привычным обыкновенным дробям, поэтому при делении приходится предварительно округлять их до определенного разряда. Это действие должно быть выполнено как с делимым, так и с делителем: имеющуюся конечную или периодическую дробь в интересах точности мы тоже будем округлять.

Пример 3

Найдите, сколько будет ,779…1,5602.

Решение 

Первым делом мы округляем обе дроби до сотых. Так мы переходим от бесконечных непериодических дробей к конечным десятичным:

,779…≈,78

1,5602≈1,56

Можем продолжить подсчеты и получить примерный результат: ,779…1,5602≈,781,56=78100156100=78100·100156=78156=12=,5.

Точность результата будет зависеть от степени округления.

Ответ: ,779…1,5602≈,5.

Алгоритм письменного деления трёхзначного числа на однозначное

Организация: МАОУ СОШ № 40

Населенный пункт: Краснодарский край, г. Новороссийск

Урок математики в 3 классе.

Тема: Алгоритм письменного деления трёхзначного числа на однозначное.

Цель: знакомство со способом деления трёхзначного числа на однозначное в столбик; составление алгоритма деления.

Планируемые образовательные результаты (УУД).

Личностные:

— формирование положительного отношения и интерес к изучению математики.

Предметные:

— научиться составлять алгоритм письменного деления на однозначное число, вычислять периметр, соблюдать порядок выполнения действий

Метапредметные:

регулятивные:

— уметь удерживать цель учебной деятельности; сопоставлять результаты собственной деятельности с оценкой её товарищами.

познавательные:

— планировать сою деятельность, время, затраты.

коммуникативные:

— слушать собеседника и вести диалог, оценивать свои достижения.

Тип урока: урок открытия новых знаний.

Методы: частично-поисковый.

Формы: фронтальная, индивидуальная.

Оборудование: учебник математики 3 класс, компьютер, проектор.

Ход урока.

  1. Мотивация к учебной деятельности.

— Ребята, добрый день

— Давайте улыбнемся друг другу и пожелаем удачи!

Урок математики

Мы начинаем,

Ещё одну тайну

Сегодня узнаем

Не отвлекайся, внимателен будь,

За новыми знаниями отправимся в путь!

— Мы продолжаем с вами открывать новые знания, поэтому девизом нашего урока я предлагаю взять предложение:

«У нас обязательно всё получится!»

— Но прежде чем отправится за новыми знаниями, я предлагаю вам вспомнить ранее изученное.

  1. Актуализация опорных знаний.
  1. Как называются числа при делении?
  1. Решите задачу:

В букете 17 гвоздик. Их нужно поставить в вазы, по 5 гвоздик в каждую. Сколько для этого потребуется ваз? Сколько гвоздик останется?

17 : 5 = 3 (ост. 2)

— Правильно, 3 вазы, 2 гвоздики останется. Здесь у нас деление с остатком.

— Скажите, о чём мы всегда должны помнить при делении с остатком?

Остаток всегда меньше делителя

— А какие остатки могут быть при делении на 5, 3, 7?

Делитель

5

3

7

Остаток

0,1,2,3,4

0,1,2

0,1,2,3,4,5,6

— Молодцы!

III. Постановка темы урока.

— А сейчас я вам предлагаю решить следующий пример:

963 : 3 =

— Как мы его будем решать?

Представим число 963 в виде суммы разрядных слагаемых и каждое из них разделим на 3, полученные результаты сложить.

963 : 3 = (900+60+3) : 3 = 900 : 3 + 60 : 3 + 3 : 3 = 300 + 20 + 1 = 321

— Как вы думаете, удобно ли делить таким способом?

— Сколько действий выполнили, чтобы найти значение такого выражения? Существует другой способ решения, более рациональный.

— Может уже кто-то догадался? (Деление в столбик или уголком)

— Итак тема нашего урока: Алгоритм письменного деления трёхзначного числа на однозначное.

— Сформируйте цель урока.

Составить алгоритм деления и учиться делить в столбик или уголком.

https://disk.yandex.ru/i/KhIP2yr8urFEIQ

— Давайте повторим алгоритм деления

Полный текст статьи см. в приложении.

Приложения:

  1. file0.docx.. 634,8 КБ

Опубликовано: 23.03.2021

Как делить в столбик четырехзначные, многозначные большие числа, многочлены на многочлены: примеры, объяснение

на доске решены примеры на деление столбиком трёх- и более значных чисел

В случае деления четырёхзначного числа на любое, которое содержит до 4 порядков одновременно, обратите внимание ребёнка на нюансы:

  • определение правильного количества порядков после действия деления. Например, в примере 6734:56 должно получится двузначное целое число в графе «частное», а в примере 8956:1243 — однозначное целое,
  • появление нулей в частном. Когда в ходе решения при переносе следующего числа делимого результат оказывается меньше делителя,
  • проверку полученного результата посредством выполнения действия умножения. Этот нюанс актуален для деления больших чисел без остатка. Если последний присутствует, то советуйте ребёнку проверить себя и ещё раз разделить числа в столбик.

Ниже пример решения.

алгоритм деления столбиком четырёхзначного числа

пример деления столбиком четырёхзначного числа на двузначное

Для больших многозначных чисел, которые делятся на конкретные значения меньше или равные им по количеству знаков, актуальны все алгоритмы, рассмотренные выше.

Ребёнку следует быть особенно внимательным в таких случаях и правильно определять:

  • количество знаков у частного, то есть результата
  • цифры у делимого для первого действия
  • правильность переноса остальных чисел

примеры деления столбиком многочленов

При совершении действия деления над многочленами обращайте внимание детей на ряд особенностей:

  • у действия может быть остаток либо отсутствовать. В первом случае запишите его в числителе, а делитель в знаменателе,
  • для совершения действия вычитания дописывайте в многочлен недостающие степени функции, умноженные на ноль,
  • совершайте преобразование многочленов путём выделения повторяющихся дву-/многочленов. Тогда их сократите и получится результат без остатка.

Ниже ряд подробных примеров с решениями.

примеры деления многочленов в столбик

Сложнее всего детям даются задачи на трехзначные и четырехзначные числа. Четверокласснику тяжело оперировать тысячами и сотнями тысяч. У школьника возникают следующие проблемы:

  1. Не может определить неполное число делимого для первого действия. Вернитесь к изучению разрядов натуральных чисел, поработайте над развитием внимания малыша.
  2. Пропускает 0 в записи частного. Это самая распространенная проблема. В результате у ребенка получается число на несколько разрядов меньше правильного. Чтобы избежать этой ошибки, нужно распечатывать памятку с последовательностью действий в примерах, где в середине частного есть нули. Предложите ребенку тренажер с такими заданиями для отработки навыка.

При обучении решению задач с крупными числами действуйте поэтапно:

  1. Объясните, что такое неполное делимое и зачем его выделять.
  2. Потренируйтесь в поиске делимого устно без последующего решения задач. Например, дайте детям такие задания:

Найдите неполное частное в примерах: 369:28; 897:12; 698:36.

  1. Теперь приступайте к решению на бумаге. Запишите столбиком: 1068:89.
  2. Сначала нужно отделить неполное делимое. Можно использовать запятую сверху над числами.

106’8:89

  1. Подбирайте частное на отдельном листочке или посчитайте в уме.
  2. Распишите результат.
  3. Внимательно отнимайте цифры от делимого. Следите за тем, чтобы результат после вычитания был меньше делителя.
  4. Продолжайте деление до конца, пока не получится 0.
  5. Придумайте еще несколько похожих примеров без остатка. Степень сложности увеличивайте постепенно.

Деление в столбик

Столбик – это вертикальная линия, к середине которой проводится горизонтальная. Над горизонтальной чертой пишется делитель, с другой стороны вертикальной черты, рядом с делителем записывают делимое. Под горизонтальной чертой будет записываться результат.

Первым этапом нужно среди первых цифр числа 967 найти число, которое больше 23. Рассматриваем по порядку: 9 – меньше 23, а вот 96 уже больше. Значит первым шагом мы делим число 96 на число 23. Обязательно с остатком.

96:23=8, ост. 4 – в столбике под 96 записывается результат произведения 8*23=92. Число 92 подчеркивается и под ним записывается результат разности: 96-92=4. Рядом с 4 сносится цифра 7. Получается число 47, которое таким же образом делится на 23. А число 8 будет первой цирой в результате.

47:23=2, ост. 1 – цифра 2 будет второй цифрой результата.

Рядом с 1 можно снести 0 и считать уже дробную часть частного, но мы поделим число с остатком.

Результат: 967:23=82, ост.

Подобным образом можно поделить сколь угодно большое многозначное число на однозначное.

Что мы узнали?

Мы разобрались, чем отличается однозначное число от многозначного. Рассказали о том, что такое деление и выделили все свойства деления. Привели алгоритм деления многозначного числа на однозначное столбиком.

  1. Вопрос 1 из 5

Начать тест(новая вкладка)

По теме: методические разработки, презентации и конспекты

Данный урок формирует умение умножать и делить трехзначные числа на однозначные, находить неизвестный компонент в уравнении путем нахождения частного, отрабатывать умение решать задачи на приведение к.

Конспект урока по математике ОС «Школа 2100» по ФГОС НОО (2009Г) с УУД в 3 классе авторы учебника: Демидова, Козлова.

Математика 3 класс программа «2100».

Конспект урока математики » Устные приемы умножения и деления трёхзначных чисел на однозначные».

Цели урока:познакомиться с алгоритмами устных приемов умножения и деления трехзначных чисел, аналогичных таким же приемам при умножении и делении двузначных чисел.

Источник

Решение задач с единицами площади

Ребята, взрослые люди часто испытывают досаду, занимаясь ремонтом дома или квартиры. Почему? Знакома ситуация, когда чуть-чуть не хватило краски или обоев? Нужно срочно бежать в магазин, чтобы купить недостающие материалы. Можно ли этого избежать? Конечно, можно! Главное, правильно выполнить расчеты. Например, правильно измерить площадь пола под покраску или площадь стен под обои.

Задача

В комнате длиной 7 м и шириной 8 м укладывают на пол ламинат квадратами 50х50 см. Сколько штук ламината потребуется для этой комнаты?

Подсказка. Вычислите площадь комнаты и площадь одного квадрата ламината. Одинаковые ли единицы площади вы использовали? Выразите квадратные метры в квадратных сантиметрах.

Решите задачу самостоятельно.

Проверь себя.

S пола = 7 ∙ 8 = 56 (м²)

S лам. = 50 ∙50 = 2 500 (см²)

1 м² = 10 000 см²

10 000 : 2 500 = 4 (шт.) – ламината в 1 м².

56 ∙ 4 = 224 (шт.) – ламината потребуется.

Ответ: 224 штук ламината.

Задача

Для покраски пола комнаты площадью 35 м² купили 3 кг краски. Хватит ли этой краски, если на 1 м² пола расходуется 100 г краски.

Выразим 3 кг в граммах.

1 кг = 1 000 г

3 кг = 3 000 г

35 ∙ 100 = 3 500 (г) – краски потребуется.

3 500 – 3000 = 500 (г) – краски не хватит для покраски пола.

Ответ: 500 г краски не хватит.

Решите аналогичную задачу самостоятельно и проверьте по образцу.

Задача

Стены комнаты решили оклеить обоями. Площадь поверхности составляет 80 м². На одной стене есть окно – 3 м², а на другой – дверь занимает 4 м². Хватит ли 7 рулонов обоев, если в одном рулоне 10 м² обоев.

Проверь себя.

3 + 4 = 7 (м²) – занимают окно и дверь.

80 – 7 = 73 (м²) – нужно оклеить обоями.

7 ∙ 10 = 70 (м²) – в семи рулонах.

73 – 70  = 3 (м²) – обоев не хватит.

Ответ: не хватит 3 м².

Ребята, на уроке мы учились делить на трехзначное число без остатка и с остатком, решали сложные задачи с единицами площади. А теперь настало время подвести итоги! Устроим небольшое соревнование на звание «Знатока математики».

Решите примеры за одну минуту!

(12 543 – 3 890 + 15 498) ∙ 69 ∙ 0 ∙594 =

640 ∙5 ∙0 +640 : 1 – 630 =

? + 150 – 240 – 10 + 26 = 526

Проверь себя.

0, 10, 600.

Кому удалось справиться с заданием за одну минуту, может смело назвать себя большим молодцом!

В первом и втором выражениях самые наблюдательные заметили умножение на нуль (можно не вычислять все выражение, а ∙ 0 = 0).

В третьем выражении первое число можно быстро найти, вычисляя с конца обратным действием: 526 – 26 + 10 + 240 – 150 = 600

Оставьте свой комментарий

На балансе занятий — 1

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector