Математика

Как делить столбиком

Допустим, нам нужно разделить  780  на  12,  записываем действие в столбик и приступаем к делению:

Деление столбиком выполняется поэтапно. Первое, что нам требуется сделать, это определить неполное делимое. Смотрим на первую цифру делимого:

это число  7,  так как оно меньше делителя, то мы не можем начать деление с него, значит нужно взять ещё одну цифру из делимого, число  78  больше делителя, поэтому мы начинаем деление с него:

В нашем случае число  78  будет неполным делимым, неполным оно называется потому, что является всего лишь частью делимого.

Определив неполное делимое, мы можем узнать сколько цифр будет в частном, для этого нам нужно посчитать, сколько цифр осталось в делимом после неполного делимого, в нашем случае всего одна цифра —  0,  это значит, что частное будет состоять из  2  цифр.

Узнав количество цифр, которое должно получиться в частном, на его месте можно поставить точки. Если при завершении деления количество цифр получилось больше или меньше, чем указано точек, значит где-то была допущена ошибка:

Приступаем к делению. Нам нужно определить сколько раз  12  содержится в числе  78.  Для этого мы последовательно умножаем делитель на натуральные числа  1, 2, 3, …,  пока не получится число максимально близкое к неполному делимому или равное ему, но не превышающее его. Таким образом мы получаем число  6,  записываем его под делитель, а из  78  (по правилам вычитания столбиком) вычитаем  72  (12 · 6 = 72).  После того, как мы вычли  72  из  78,  получился остаток  6:

Обратите внимание, что остаток от деления показывает нам, правильно ли мы подобрали число. Если остаток равен делителю или больше него, то мы не правильно подобрали число и нам нужно взять число побольше

К получившемуся остатку —  6,  сносим следующую цифру делимого —  0.  В результате, получилось неполное делимое —  60.  Определяем, сколько раз  12  содержится в числе  60.  Получаем число  5,  записываем его в частное после цифры  6,  а из  60  вычитаем  60  (12 · 5 = 60).  В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит  780  разделилось на  12  нацело. В результате выполнения деления столбиком мы нашли частное — оно записано под делителем:

780 : 12 = 65.

Рассмотрим пример, когда в частном получаются нули. Допустим нам нужно разделить  9027  на  9.

Определяем неполное делимое — это число  9.  Записываем в частное  1  и из  9  вычитаем  9.  В остатке получился нуль. Обычно, если в промежуточных вычислениях в остатке получается нуль, его не записывают:

Сносим следующую цифру делимого —  0.  Вспоминаем, что при делении нуля на любое число будет нуль. Записываем в частное нуль  (0 : 9 = 0)  и в промежуточных вычислениях из  0  вычитаем  0.  Обычно, чтобы не нагромождать промежуточные вычисления, вычисление с нулём не записывают:

Сносим следующую цифру делимого —  2.  В промежуточных вычислениях вышло так, что неполное делимое  (2)  меньше, чем делитель  (9).  В этом случае в частное записывают нуль и сносят следующую цифру делимого:

Определяем, сколько раз  9  содержится в числе  27.  Получаем число  3,  записываем его в частное, а из  27  вычитаем  27.  В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит число  9027  разделилось на  9  нацело:

9027 : 9 = 1003.

Рассмотрим пример, когда делимое оканчивается нулями. Пусть нам требуется разделить  3000  на  6.

Определяем неполное делимое — это число  30.  Записываем в частное  5  и из  30  вычитаем  30.  В остатке получился нуль. Как уже было сказано, нуль в остатке в промежуточных вычислениях записывать не обязательно:

Сносим следующую цифру делимого —  0.  Так как при делении нуля на любое число будет нуль, записываем в частное нуль и в промежуточных вычислениях из  0  вычитаем  0:

Сносим следующую цифру делимого —  0.  Записываем в частное ещё один нуль и в промежуточных вычислениях из  0  вычитаем  0.  Так как в промежуточных вычислениях, вычисление с нулём обычно не записывают, то запись можно сократить, оставив только остаток —  0.  Нуль в остатке в самом конце вычислений обычно записывают для того, чтобы показать, что деление выполнено нацело:

Так как в делимом больше не осталось цифр, значит  3000  разделилось на  6  нацело:

3000 : 6 = 500.

Свойства

Операция деления на числовых множествах N,Z,Q,R,C{\displaystyle \mathbb {N} ,\mathbb {Z} ,\mathbb {Q} ,\mathbb {R} ,\mathbb {C} } имеет следующие основные свойства:

Деление антикоммутативно — от перемены мест аргументов частное изменяется:

Антикоммутативность: ab≠ba;{\displaystyle a:b\neq b:a;}

Деление антиассоциативно — при последовательном выполнении деления трёх или более чисел последовательность выполнения операций имеет значение, результат изменится:

Антиассоциативность: (ab)c≠a(bc);{\displaystyle (a:b):c\neq a:(b:c);}

Деление дистрибутивно справа, это — свойство согласованности двух бинарных операций, определённых на одном и том же множестве, так-же известно, как распределительный закон :

Дистрибутивность: (a+b)x=(ax)+(bx), x≠;{\displaystyle (a+b):x=(a:x)+(b:x),~x\neq 0;}

Относительно деления в множестве A{\displaystyle A} существует единственный нейтральный элемент справа (число 1{\displaystyle 1}), деление на единицу (или нейтральный элемент) даёт число равное исходному:

Нейтральный элемент справа: x1=x;{\displaystyle x:1=x;}

Относительно деления в множестве A{\displaystyle A} существует единственный обратный элемент, получаемый делением единицы на число, что даёт число обратное исходному:

Обратный элемент: 1x=1x=x−1, x≠;{\displaystyle 1:x={\frac {1}{x}}=x^{-1},~x\neq 0;}

Относительно деления в множестве A{\displaystyle A} существует единственный нулевой элемент слева, число 0{\displaystyle 0} делённое на любое число даёт нуль:

Нулевой элемент слева: x=,∃∈A, x≠;{\displaystyle 0:x=0,\quad \exists 0\in A,~x\neq 0;}

По правилам обычной арифметики деление на ноль 0{\displaystyle 0} (нулевой элемент) не определено;

Деление на ноль: x=∞,∃∈A, x≠;{\displaystyle x:0=\infty ,\quad \exists 0\in A,~x\neq 0;}

Деление на противоположный элемент даёт минус единицу:

x(−x)=−1,∃!−x∈A, x≠{\displaystyle x:(-x)=-1,\quad \exists !-x\in A,~x\neq 0.}.

Результат деления не всегда является определённым для множеств натуральных чисел N{\displaystyle \mathbb {N} } и целых чисел Z{\displaystyle \mathbb {Z} }, чтобы получить натуральное или целое число в результате деления, делимое должно быть кратно делителю. Невозможно в рамках этих чисел получить дробный результат. В этом случае говорится о делении с остатком. То есть деление на этих множествах есть частичная бинарная операция. .

Операция деления определённая на множествах (в полях) рациональных Q{\displaystyle \mathbb {Q} }, вещественных R{\displaystyle \mathbb {R} } и комплексных чисел C{\displaystyle \mathbb {C} } даёт число (частное) принадлежащее этому-же множеству, следовательно множества Q−,R−,C−{\displaystyle \mathbb {Q_{-0}} ,\mathbb {R_{-0}} ,\mathbb {C_{-0}} } замкнуты относительно операции деления (в точке 0 имеется разрыв второго рода — следовательно кольца рациональных, вещественных и комплексных чисел разомкнуты относительно операции деления).

В математических выражениях операция деления имеет более высокий приоритет по отношению к операциям сложения и вычитания, то есть она выполняется перед ними.

Деление на ноль

По определению числовых множеств N,Z,Q,R,C{\displaystyle \mathbb {N} ,\mathbb {Z} ,\mathbb {Q} ,\mathbb {R} ,\mathbb {C} } деление на число 0 не определено. Частное от деления какого-либо числа, отличного от нуля, на нуль не существует, так как в этом случае никакое число не может удовлетворять определению частного. Для определения данной ситуации полагают, что результат этой операции считается «бесконечно большим» или «равным бесконечности» (положительной или отрицательной, в зависимости от знака операндов). С геометрической точки зрения выполняется аффинное расширение числовой прямой. То есть привычная последовательность вещественных чисел «сжимается» так, чтобы можно было оперировать границами этой последовательности. В качестве границ (условных) введены две абстрактные бесконечно большие величины +∞,−∞{\displaystyle +\infty ,-\infty }. С точки зрения общей топологии выполняется двухточечная компактификация числовой прямой путем добавления двух идеализированных точек (бесконечностей с противоположным знаком). Пишут:

Топологическая картинка проективного расширения числовой прямой и точки 0/0

a=±∞{\displaystyle a:0=\pm \infty }, где a≠{\displaystyle a\neq 0.}

Если произвести проективное расширение множества вещественных чисел введением идеализированной точки ∞ {\displaystyle \infty ~},которая соединяет оба конца вещественной прямой, тогда с точки зрения общей топологии будет выполнена числовой прямой путем добавления бесконечности без знака. Дополним полученное множество чисел новым элементом ⊥={\displaystyle \perp =0/0}, в результате получится R⊥∞=R∪{∞,⊥}{\displaystyle \mathbb {R} _{\perp }^{\infty }=\mathbb {R} \cup \{\infty ,\perp \}}, на данной основе строится алгебраическая структура W=⟨R⊥∞,,1,+,⋅,⟩ {\displaystyle {\mathfrak {W}}=\langle \mathbb {R} _{\perp }^{\infty },0,1,+,\cdot ,/\rangle ~}называемая «» (Wheel). Термин был взят из-за схожести с топологической картинкой проективного расширения числовой прямой и точки 0/0. Внесенные изменения превращают эту алгебраическую систему в моноид как по операции сложения (с нулем в качестве нейтрального элемента), так и по операции умножения (с единицей в качестве нейтрального элемента). Это тип алгебры, где деление всегда определено. В частности, деление на ноль имеет смысл.

Существуют и другие алгебраические системы с делением на ноль. Например, «общие луга» (common meadows). Они чуть проще, так как не расширяют пространство, вводя новые элементы. Цель достигается как в колесах, трансформацией операций сложения и умножения, а также отказом от бинарного деления.

Общий принцип деления в столбик

Если частное от деления двух чисел является многозначным числом, нахождение его происходит путем деления в столбик. Еще его называют деление уголком.

Решим пример \(\textcolor{red} {295383\div 34}\).

Далее записываем известные
компоненты деления следующим образом:

и начинаем вычисление:

1. Берем первое неполное делимое и пытаемся его разделить на делитель.

Вот тут нам и пригодится способ нахождения однозначного частного. Воспользовавшись им, находим, что в 295 тысячах делитель 34 содержится целиком 8 тысяч раз.

Записываем в частное первую найденную цифру
разряда тысяч, а под неполным делимым пишем результат произведения неполного
частного и делителя. И сразу же находим остаток от этого действия, т.е.
вычитаем из неполного частного результат этого произведения.

В результате умножения первой найденной цифры частного на делитель у нас получилось \(\textcolor{red} {8\cdot 37=272}\). Записываем его под 295 и находим разницу: \(\textcolor{red} {295-272=23}\). Значит, 23 тысячи у нас остаются неразделенными.

В качестве еще одного действия самопроверки нужно сравнить полученную разницу с делителем. Если она меньше делителя, то мы на правильном пути, если же разница равна или больше делителя, то мы или неправильно нашли цифру частного, или допустили ошибку при умножении на делитель либо при нахождении остатка.

2. Оставшиеся неразделенные 23 тысячи представляют собой 230 сотен. Прибавляем к ним те 3 сотни, которые содержатся в делимом (говорят: сносим пять) и получаем второе неполное делимое 233 сотни.

Находим результат деления второго неполного делимого на делитель. 233 сотни разделить на 34 будет 6 сотен. Значит, в разряде сотен частного будет цифра 6. Умножаем ее на делитель 34, получаем 204 и еще 29 сотен неразделенных.

3. 29 неразделенных сотен – это 290 десятков. Добавляем (сносим) к ним 8 десятков делимого, получаем третье неполное делимое 298 десятков.

При делении второго неполного делимого 298 десятков на делитель 34 получается 8 десятков, и еще 26 десятков неразделенных (как и в предыдущих действиях, я умножил 8 на 34 и результат отнял от 298). Поэтому, в частном, в разряде десятков записываем цифру 8.

4. И наконец, 26 десятков – это 260 простых единиц. Добавляем (сносим) к ним 3 единицы делимого и получаем четвертое неполное делимое 263 единицы.

Разделив 263 единицы на 34, получаем 7 полных единиц и 25 неразделенных. Записав в частном последнюю цифру разряда единиц, получаем окончательный ответ действия \(\textcolor{red} {295383\div 34=8687}\) и 25 в остатке.

Рассмотрим еще один пример. \(\textcolor{red} {25326\div 63}\).

Первое неполное делимое будет 253 сотни, количество цифр в частном – 3.

Делим 253 сотни на 63, получается 4 полных сотни и неразделенная 1 сотня в остатке.

1 сотня = 10 десятков, добавляем (сносим) 2 десятка из делимого, получаем второе неполное делимое 12 десятков.

Но 12 не делится нацело на 63 части, то есть, нет ни одного целого десятка в каждой части. Значит, мы в частном в разряде десятков должны записать , поскольку все 12 десятков оказались неразделенными. А к этим 12 десяткам (т.е. 120 сотням) добавить (снести) 6 единиц делимого.

Итак, запомните, что
каждое неполное делимое образует в частном одну цифру соответствующего разряда
и что даже если неполное делимое меньше делителя, то в частном все равно нужно
записать нулевой результат этого действия.

126 единиц делим на 63, получается 2 единицы без остатка. Теперь мы можем записать окончательный ответ деления \(\textcolor{red} {25326\div 63=402}\).

Итак, в общем виде алгоритм деления в столбик выглядит так:1. Находим первое неполное делимое и количество цифр в частном.2. Делим неполное делимое на делитель. Цифру, полученную в результате деления записываем ниже черты под делителем.3. Умножаем полученную цифру на делитель, результат записываем под неполным делимым.4. Ставим между ними знак минус и выполняем действие.5. К полученной разнице сносим цифру следующего разряда (если она есть) и получаем второе неполное делимое.6. Выполняем пункты 2-5 до тех пор, пока в делимом не останется ни одной неснесенной цифры.7. Если неполное делимое невозможно разделить на делитель, то в частном ставится и к этому неполному делимому сносится следующая цифра.

Формы записи и терминология

Символы деления в математике

Деление записывается с использованием одного из «знаков деления» — «÷, , , −{\displaystyle \div ,~/,~:,~-}» между аргументами, такая форма записи называется инфиксной нотацией. В данном контексте знак деления является бинарным оператором. Знак деления не имеет специального названия, как например знак сложения, который называется «плюс».

  • Самый старый из используемых символов видимо — косая черта (/). Впервые его использовал английский математик Уильям Отред в своём труде «Clavis Mathematicae» 1631 г.
  • Немецкий математик Лейбниц предпочитал знак в виде двоеточия (:) Этот символ он использовал в своём труде Acta eruditorum 1684 г. До Лейбница этот знак был использован англичанином Джонсоном в 1633 году в своей книге, но как знак дроби, а не деления в узком смысле.
  • Йоханн Ран ввёл знак обелюс (÷) в качестве знака деления, она появилась в его книге «Teutsche Algebra» 1659 г. Знак Рана часто называют «английским знаком деления».

В русскоязычных учебниках математики в основном используется знак в виде двоеточия (:). Косая черта (/) используется в компьютерной нотации. Результат записывается с использованием знака равенства «={\displaystyle =}», например:

ab=c{\displaystyle a:b=c} ;
63=2{\displaystyle 6:3=2} («шесть разделить на три равно два») ;
655=13{\displaystyle 65:5=13} («шестьдесят пять разделить на пять равно тринадцать») .

В математических выражениях часто в качестве знака деления используется дробная черта. На письме знак деления очень похож на другие письменные символы. Следует внимательнее разбирать выражение, чтобы не возникло ошибочной идентификации символа.

Деление в алгебре

В отличие от простейших арифметических случаев на произвольных множествах и структурах деление может быть не только не определено, но и обладать множественностью результата.

Обычно в алгебре деление вводится через понятие единичного и обратного элементов. Если единичный элемент вводится однозначным образом (обычно аксиоматически или по определению), то обратный элемент часто может быть как левым (x−1∗x=e{\displaystyle x^{-1}*x=e}), так и правым (x∗x−1=e{\displaystyle x*x^{-1}=e}). Эти два обратных элемента могут по отдельности существовать или не существовать, равняться или не равняться друг другу.

К примеру, отношение матриц определяется через обратную матрицу, при этом даже для квадратных матриц может быть:

B−1⋅A≠A⋅B−1{\displaystyle B^{-1}\cdot A\neq A\cdot B^{-1}}.

Отношение тензоров в общем случае не определено.

Операция деления: основные обозначения

Очень часто в задачах вопрос сформулирован следующим образом: «Найти частное чисел 30 и 5» или «Определить делитель, если частное 42, а делимое — 7». Если ребенок не знает обозначений, то он не сможет приступить к решению такого примера. Поэтому начинать нужно с основ:

  • делимое — то число, которое и будет разделено;

  • делитель — число, на которое будет разделено делимое;

  • частное — результат.

Понять роль каждого показателя поможет простая игра. Есть 12 вкусных конфет, а в семье 4 человека. Как разделить сладости поровну? Всего 12 — это делимое. Количество человек — делитель. Ученику начальной школы будет легче понять задачу, если объяснить ему, что делимое всегда самое большое число. Невозможно разделить 4 на 12, а значит, пример будет выглядеть следующим образом: 12:4 = 3.

Формы записи и терминология

Символы деления в математике

Деление записывается с использованием одного из «знаков деления» — «÷, , , −{\displaystyle \div ,~/,~:,~-}» между аргументами, такая форма записи называется инфиксной нотацией. В данном контексте знак деления является бинарным оператором. Знак деления не имеет специального названия, как например знак сложения, который называется «плюс».

  • Самый старый из используемых символов видимо — косая черта (/). Впервые его использовал английский математик Уильям Отред в своём труде «Clavis Mathematicae» 1631 г.
  • Немецкий математик Лейбниц предпочитал знак в виде двоеточия (:) Этот символ он использовал в своём труде Acta eruditorum 1684 г. До Лейбница этот знак был использован англичанином Джонсоном в 1633 году в своей книге, но как знак дроби, а не деления в узком смысле.
  • Йоханн Ран ввёл знак обелюс (÷) в качестве знака деления, она появилась в его книге «Teutsche Algebra» 1659 г. Знак Рана часто называют «английским знаком деления».

В русскоязычных учебниках математики в основном используется знак в виде двоеточия (:). Косая черта (/) используется в компьютерной нотации. Результат записывается с использованием знака равенства «={\displaystyle =}», например:

ab=c{\displaystyle a:b=c} ;
63=2{\displaystyle 6:3=2} («шесть разделить на три равно два») ;
655=13{\displaystyle 65:5=13} («шестьдесят пять разделить на пять равно тринадцать») .

В математических выражениях часто в качестве знака деления используется дробная черта. На письме знак деления очень похож на другие письменные символы. Следует внимательнее разбирать выражение, чтобы не возникло ошибочной идентификации символа.

Важные нюансы

В изучении арифметических действий очень важна последовательность. Нельзя учить малыша читать, пока он не выучил все буквы алфавита — путаница и постоянные ошибки не только будут мешать, но и могут раз и навсегда отбить охоту к чтению. С математикой аналогичная ситуация:

  • нужно уметь правильно разделять большое число на несколько отдельных составляющих, с которыми проще провести требуемые операции;

  • сложение и вычитание должны быть отработаны до автоматизма;

  • к делению приступают только после тщательного изучения таблицы умножения.

Важно обратить внимание, что в качестве делимого выступает самое большое число — это поможет не запутаться при решении задач. А на ноль делить нельзя — подобный вопрос с подвохом часто встречается в заданиях, поэтому нужно не упустить этот момент

Деление физических величин

Единица измерения физической величины имеет определённое наименование (размерность): для длины (L) — метр (м), для времени (T) — секунда (с), для массы (M) — грамм (г) и так далее. Поэтому, результат измерения той или иной величины представляет собой не просто число, а число с наименованием. Наименование представляет собой самостоятельный объект, который равноправно участвует в операции деления. При производстве операции деления над физическими величинами, делятся как сами числовые составляющие, так и их наименования.

Помимо размерных физических величин существуют безразмерные (количественные) величины, которые формально являются элементами числовой оси, то есть числами, не имеющие привязки к определённым физическим явлениям (измеряются «штуками», «разами» и тому подобное). При делении чисел представляющих собой физические величины на безразмерную величину, делимое число изменяется по величине и сохраняет единицу измерения. Например если взять 15 гвоздей и разложить в 3 коробки, то в результате деления получим 5 гвоздей в каждой коробке:

15 гв3=5 гв.{\displaystyle 15~{\text{гв}}:3=5~{\text{гв}}.}

Деление разнородных физических величин надо рассматривать как нахождение новой физической величины, принципиально отличающейся от величин, которые мы делим. Если физически возможно создание такого частного, например, при нахождении работы, скорости или других величин, то эта величина образует множество, отличное от начальных. В этом случае композиции этих величин присваивается новое обозначение (новый термин), например: плотность, ускорение, мощность и прочее.

Например, если разделить длину L=8 м {\displaystyle L=8~{\text{м}}~}на время T=2 с, {\displaystyle T=2~{\text{с}},~}соответствующие одному физическому процессу, то получится именованное число (физическая величина) соответствующее этому же физическому процессу, которая называется «скорость» и измеряется в «метрах в секунду»: V=4 м/с.{\displaystyle V=4~{\text{м/с}}.}

V=LT=8 м2 с=4  (м : с)=4 м/с.{\displaystyle V=L:T=8~{\text{м}}:2~{\text{с}}=4~~{\text{(м : с)}}=4~{\text{м/с}}.}

При описании математическими средствами физических процессов немаловажную роль играет понятие однородности, которое означает например, что «1 кг муки» и «1 кг меди» принадлежат разным множествам {мука} и {медь} соответственно и не могут быть непосредственно разделены. Также понятие однородности предполагает, что делимые величины принадлежат одному физическому процессу. Недопустимо делить, например скорость лошади на время собаки.

Деление на смешанное число

Для деления смешанных чисел необходимо:

  • представить числа в виде неправильных дробей
  • разделить то, что получилось друг на друга.

Если урок в самом разгаре и посчитать нужно быстро — можно воспользоваться онлайн-калькулятором. Вот несколько подходящих:

  • раз
  • два
  • три

Приходите практиковаться в детскую школу Skysmart. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом. А еще помогут догнать сверстников и справиться со сложной контрольной.

Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем.

Деление в Энциклопедическом словаре:

Деление — арифметическое действие, обратное умножению. посредством деленияпо произведению a (делимому) и одному из множителей b (делителю),отличному от нуля, отыскивается другой множитель (частное). Знаки деления- две точки (a:b), горизонтальная черта или наклонная черта (a/b). Делениедробных чисел a/b и c/d определяется равенством (a/b):(c/d) = ad/bc,Деление комплексных чисел ? = a+bi и ? = c+di, c2+d2 ? 0 — равенством ???= (ac+bd)/(c2+d2)+(bc-ad)i/(c2+d2).

способ размножения одноклеточных организмов, а также клеток, составляющих тела многоклеточных. У бактерий деление осуществляетсяобразованием поперечной перегородки. У одноклеточных водорослей и животныхделение вместе с тем и бесполое размножение. У многоклеточных делениеклеток лежит в основе роста тканей и полового размножения (см. Митоз, Мейоз).

Обучение делению многочленов

Деление многочленов

Детям нужно рассказать тонкости деления данного формата:

  • По итогу деления может быть остаток, так же он может отсутствовать.
  • Чтобы совершать вычитание, нужно дополнять в многочлен недостающей степенью функции, умноженной на 0.
  • Делайте преобразование многочлена с помощью выделения повторяющихся многочленов или двучленов. При сокращении получится ответ без остатка.

Рекомендации для легкого обучения ребенка

Также важно пробудить интерес к предмету у ребенка. Этому способствуют аналоги математических игр в процессе игры

Наблюдение за природой тоже можно преобразовать в увлекательную математику.

Родителям нужно тренировать наблюдательность детей. Это ключ к пониманию математики и других предметов.

Можно обзавестись полезными таблицами умножения и деления. Плакаты можно повесить в комнате ребенка. Тогда он может в любой момент ими воспользоваться и справиться с задачами.

Деление в столбик

Как научиться ребенку делить числа в столбик

9 Общий Балл

Научить ребенка делению чисел

Достоверность информации

9.5

Актуальность информации

8

Раскрытие темы

9

Доступность применения

9.5

Легкость запоминания

7.5

Плюсы

  • При регулярных занятиях, каждый ребенок поймет даже самый сложный материал
  • Деление входит в школьную программу
  • Ребенка можно учить в игровой форме

Минусы

  • Некоторым детям сложно воспринимать и запоминать информацию математического характера
  • Для успешного изучения необходимо повторять материал

 | 

Деление с остатком целого отрицательного числа на целое положительное

Чтобы быстро разделить с остатком целое отрицательное число на целое положительное, тоже придумали правило:

Чтобы получить неполное частное с при делении целого отрицательного a на положительное b, нужно применить противоположное данному числу и вычесть из него 1. Тогда остаток d будет вычисляться по формуле:

d = a − b * c

Из правила делаем вывод, что при делении получается целое неотрицательное число.

Для точности решения применим алгоритм деления а на b с остатком:

  • найти модули делимого и делителя;
  • разделить по модулю;
  • записать противоположное данному число и вычесть 1;
  • использовать формулу для остатка d = a − b * c.

Рассмотрим пример, где можно применить алгоритм.

Пример

Найти неполное частное и остаток от деления −17 на 5.

Как решаем:

Разделим заданные числа по модулю.

Получаем, что при делении частное равно 3, а остаток 2.

Так как получили 3, противоположное ему −3.

Необходимо отнять единицу: −3 − 1 = −4.

Чтобы вычислить остаток, необходимо a = −17, b = 5, c = −4, тогда:

d = a − b * c = −17 − 5 * (−4) = −17 − (− 20) = −17 + 20 = 3.

Значит, неполным частным от деления является число −4 с остатком 3.

Ответ: (−17) : 5 = −4 (остаток 3).

Чтобы ребенок не запутался в правилах деления с остатком, запишите его в современную школу Skysmart. Ученики занимаются по индивидуальной программе, в комфортном темпе и вместе с внимательными учителями.

Приходите на бесплатный вводный урок и начните дружить с математикой уже завтра!

Деление на ноль

По определению числовых множеств N,Z,Q,R,C{\displaystyle \mathbb {N} ,\mathbb {Z} ,\mathbb {Q} ,\mathbb {R} ,\mathbb {C} } деление на число 0 не определено. Частное от деления какого-либо числа, отличного от нуля, на нуль не существует, так как в этом случае никакое число не может удовлетворять определению частного. Для определения данной ситуации полагают, что результат этой операции считается «бесконечно большим» или «равным бесконечности» (положительной или отрицательной, в зависимости от знака операндов). С геометрической точки зрения выполняется аффинное расширение числовой прямой. То есть привычная последовательность вещественных чисел «сжимается» так, чтобы можно было оперировать границами этой последовательности. В качестве границ (условных) введены две абстрактные бесконечно большие величины +∞,−∞{\displaystyle +\infty ,-\infty }. С точки зрения общей топологии выполняется двухточечная компактификация числовой прямой путем добавления двух идеализированных точек (бесконечностей с противоположным знаком). Пишут:

Топологическая картинка проективного расширения числовой прямой и точки 0/0

a=±∞{\displaystyle a:0=\pm \infty }, где a≠{\displaystyle a\neq 0.}

Если произвести проективное расширение множества вещественных чисел введением идеализированной точки ∞ {\displaystyle \infty ~},которая соединяет оба конца вещественной прямой, тогда с точки зрения общей топологии будет выполнена числовой прямой путем добавления бесконечности без знака. Дополним полученное множество чисел новым элементом ⊥={\displaystyle \perp =0/0}, в результате получится R⊥∞=R∪{∞,⊥}{\displaystyle \mathbb {R} _{\perp }^{\infty }=\mathbb {R} \cup \{\infty ,\perp \}}, на данной основе строится алгебраическая структура W=⟨R⊥∞,,1,+,⋅,⟩ {\displaystyle {\mathfrak {W}}=\langle \mathbb {R} _{\perp }^{\infty },0,1,+,\cdot ,/\rangle ~}называемая «» (Wheel). Термин был взят из-за схожести с топологической картинкой проективного расширения числовой прямой и точки 0/0. Внесенные изменения превращают эту алгебраическую систему в моноид как по операции сложения (с нулем в качестве нейтрального элемента), так и по операции умножения (с единицей в качестве нейтрального элемента). Это тип алгебры, где деление всегда определено. В частности, деление на ноль имеет смысл.

Существуют и другие алгебраические системы с делением на ноль. Например, «общие луга» (common meadows). Они чуть проще, так как не расширяют пространство, вводя новые элементы. Цель достигается как в колесах, трансформацией операций сложения и умножения, а также отказом от бинарного деления.

Разбор примеров на деление столбиком на двузначное число

Сначала рассмотрим простые случаи деления, когда в частном получается однозначное число.

Первое неполное делимое 265. Больше в делимом цифр нет. Значит в частном будет однозначное число.

Чтобы было легче подобрать цифру частного, разделим 265 не на 53, а на близкое круглое число 50. Для этого 265 разделим на 10, будет 26 (остаток 5). И 26 разделим на 5, будет 5 (остаток 1). Цифру 5 нельзя сразу записывать в частном, поскольку это пробная цифра. Сначала нужно проверить, подойдет ли она. Умножим 53*5=265. Мы видим, что цифра 5 подошла. И теперь можем ее записать в частном под уголок. 265-265=0. Деление выполнено без остатка.

Значение частного чисел 265 и 53 равно 5.

Иногда при делении пробная цифра частного не подходит, и тогда ее нужно менять.

В частном будет однозначное число. 

Чтобы было легче подобрать цифру частного, разделим 184 не на 23, а на 20. Для этого разделим 184 на 10, будет 18 (остаток 4). И 18 разделим на 2, будет 9. 9 – это пробная цифра, мы ее сразу писать в частном не будем, а проверим, подойдет ли она. Умножим 23*9=207. 207 больше, чем 184. Мы видим, что цифра 9 не подходит. В частном будет меньше 9. Попробуем, подойдет ли цифра 8. Умножим 23*8=184. Мы видим, что цифра 8 подходит. Можем ее записать в частном. 184-184=0. Деление выполнено без остатка.

Значение частного чисел 184 и 23 равно 8.

Рассмотрим более сложные случаи деления.

Первое неполное делимое – 76 десятков. Значит, в частном будут 2 цифры.

Определим первую цифру частного. Разделим 76 на 24. Чтобы легче было подобрать цифру частного, разделим 76 не на 24, а на 20. То есть нужно 76 разделить на 10, будет 7 (остаток 6). И 7 разделим на 2, получится 3 (остаток 1). 3 – это пробная цифра частного. Сначала проверим, подойдет ли она. Умножим 24*3=72 . 76-72=4. Остаток меньше делителя. Значит, цифра 3 подошла и теперь мы ее можем записать на месте десятков частного. 72 пишем под первым неполным делимым, между ними ставим знак минус, под чертой записываем остаток.

Продолжим деление. Перепишем в строку с остатком цифру 8, следующую за первым неполным делимым. Получим следующее неполное делимое – 48 единиц. Разделим 48 на 24. Чтобы было легче подобрать цифру частного, разделим 48 не на 24, а на 20. То есть разделим 48 на 10, будет 4 (остаток 8). И 4 разделим на 2, будет 2. Это пробная цифра частного. Мы должны сначала проверить, подойдет ли она. Умножим 24*2=48. Мы видим, что цифра 2 подошла и, значит, можем ее записать на месте единиц частного. 48-48=0, деление выполнено без остатка.

 Значение частного чисел 768 и 24 равно 32.

Первое неполное делимое – 153 сотни, значит, в частном будут три цифры.

Определим первую цифру частного. Разделим 153 на 56. Чтобы легче было подобрать цифру частного, разделим 153 не на 56, а на 50. Для этого разделим 153 на 10, будет 15 (остаток 3). И 15 разделим на 5, будет 3. 3 – это пробная цифра частного. Помните: ее нельзя сразу записывать в частном, а нужно сначала проверить, подойдет ли она. Умножим 56*3=168. 168 больше, чем 153. Значит, в частном будет меньше, чем 3. Проверим, подойдет ли цифра 2. Умножим 56*2=112. 153-112=41. Остаток меньше делителя, значит, цифра 2 подходит, ее можно записать на месте сотен в частном.

Образуем следующее неполное делимое. 153-112=41. Переписываем в ту же строку цифру 4, следующую за первым неполным делимым. Получаем второе неполное делимое  414 десятков. Разделим 414 на 56. Чтобы удобнее было подобрать цифру частного, разделим 414 не на 56, а на 50. 414:10=41(ост.4). 41:5=8(ост.1). Помните: 8 – это пробная цифра. Проверим ее. 56*8=448. 448 больше, чем 414, значит, в частном будет меньше, чем 8. Проверим, подойдет ли цифра 7. Умножим 56 на 7, получится 392. 414-392=22. Остаток меньше делителя. Значит, цифра подошла и в частном на месте десятков можем записать 7.

Пишем в строку с новым остатком 4 единицы. Значит следующее неполное делимое – 224 единицы. Продолжим деление. Разделим 224 на 56. Чтобы легче было подобрать цифру частного, разделим 224 на 50. То есть сначала на 10, будет 22 (остаток 4). И 22 разделим на 5, будет 4 (остаток 2). 4 – это пробная цифра, проверим ее, подойдет ли она. 56*4=224. И мы видим, что цифра подошла. Запишем 4 на месте единиц в частном. 224-224=0, деление выполнено без остатка.

Значение частного чисел 15344 и 56 равно 274.

Вывод

К каждому ребенку нужен свой подход — не существует единой методики, которая подойдет любому ученику. Кому-то проще оперировать цифрами, а примеры с яблоками или конфетами вызывают недоумение. Другие школьники по привычке считают на пальцах или на линейке — для них в качестве примера отлично подойдут задачи с покупками. Как объяснить ребенку деление? Начать с азов, пробовать разные методики, а если не удается достичь желаемого результата, довериться специалистам, обратиться к учителю или записаться на специализированные курсы, которые будут актуальны для детей в возрасте от 5 до 12 лет (подготовку к школе стоит начинать заблаговременно).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector