Звук: теория

Распространение звука

Проведем эксперимент. Под стеклянным колпаком поместим на поролоновой подушке электрический звонок. Затем откачиваем воздух из колпака. В процессе откачивания воздуха слышно, что звук, который издает звонок, становится все тише, хотя сквозь стекло хорошо видно, что звонок продолжает работать. В конце концов, звук вообще исчезнет.

Какой вывод из этого эксперимента? Для распространения звука необходима определенная среда. Среда может быть разной: воздух, вода, стекло, земля. Главное, чтобы среда, в которой распространяется звук, была упругой при изменении ее формы или объема. Заметим, что воздух не имеет никаких преимуществ по сравнению с другими веществами в части возможности распространения в нем звуков. Разве что в разных средах звуковые волны движутся с разной скоростью.

При распространении звука в среде происходит его поглощения. Знание законов поглощения помогает определять, например, дальность распространения звукового сигнала. Поглощение звука обусловлено причинами, связанными со свойствами самого звука (прежде всего с его частотой) и со свойствами среды. Например, в морях на некоторых глубинах образуются определенные условия для сверхдальнего распространения звука, так называемый водяной звуковой канал. Звук подводного взрыва распространяется в таком канале на расстояние более 5000 км.

При распространении звука в атмосфере происходит его рассеивание. На рассеивание звука влияют температура и давление, сила и скорость ветра.

Изучение того, как рассеивается звук в различных средах, дает информацию о внутреннем строении и физическом состоянии газов, жидкостей и твердых тел. Называется это звуковой локацией.

Разновидности тонов и полутонов

Сразу скажем, что с прикладной точки зрения, для игры на музыкальных инструментах или обучения вокалу вам эти сведения особо не пригодятся. Однако термины, обозначающие виды тонов и полутонов, могут встретиться в специальной литературе. Поэтому о них нужно иметь представление, чтобы не останавливаться на непонятных моментах во время чтения литературы или углубленного изучения музыкального материала.

Тон (виды):

  • Диатонический.
  • Хроматический.

Полутон (виды):

  • Диатонический.
  • Хроматический.

Как видите, названия повторяются, так что запомнить будет нетрудно. Итак, разбираемся!

Диатонический полутон (виды):

  • Полутон между 2 соседствующими основными ступенями (нотами) звукоряда E-F и B-C.
  • Полутон между основной и соседствующей производной ступенью как на повышение, так и на понижение.
  • Полутон между производными ступенями.

Некоторые примеры вы можете увидеть на картинке:

Хроматический полутон (виды):

  • Полутон между основной нотой и следующей, пониженной либо повышенной.
  • Полутон между повышением и двойным повышением ноты.
  • Полутон между понижением и двойным понижением ноты.

Диатонический тон (виды):

  • Тон между основными ступенями C-D, D-E, F-G, G-A, A-B.
  • Любой тон, который не относится к хроматическому.

Хроматический тон (виды):

  • Тон между 2 производными ступенями от основной ноты.
  • Тон между нотами, находящимися через 1 ступень.

Уточним, что примеры взяты из учебника Варфоломея Вахромеева «Элементарная теория музыки» и для наглядности изображены на клавиатуре фортепиано, т.к. нотный стан мы будем изучать только на следующем уроке, а понятия тона и полутона нам нужны уже сейчас . В целом, мы еще неоднократно будем обращаться к трудам этого великого российского педагога и музыковеда на протяжении нашего курса.

К слову, в 1984 году за несколько месяцев до своей смерти Варфоломей Вахромеев был награжден Орденом Святого равноапостольного князя Владимира 2-й степени за составленный им «Учебник церковного пения» для духовных школ РПЦ. Учебник выдержал несколько переизданий уже после его смерти .

Еще одна важная информация, которая нам нужна прежде, чем мы перейдем к нотной грамоте. Нам уже встретились понятия повышения и понижения основной ступени звукоряда. Так вот, повышение ступени обозначается словом и значком диез (♯‎), а понижение – словом и значком бемоль (♭).

Повышение на 2 полутона обозначается двойным диезом или дубль-диезом, понижение на 2 полутона обозначается двойным бемолем или дубль-бемолем. Для двойного диеза есть специальный значок, похожий на крестик , но, т.к. его трудно подобрать на клавиатуре, может использоваться обозначение ♯♯ или просто две решетки ##. С дубль-бемолями проще, пишут либо 2 значка ♭♭, либо латинские буквы bb.

И, наконец, последнее, о чем нужно поговорить в теме «Свойства звука», это энгармонизм звуков. Ранее вы узнали, что полутона в пределах октавы равны. Поэтому звук, сниженный на полутон относительно основной ступени, будет равен по высоте звуку, повышенному на полутон относительно ступени, стоящей двумя полутонами ниже.

Проще говоря, ля-бемоль (А♭) и соль-диез (G♯‎) одной и той же октавы звучат идентично. Точно так в пределах октавы одинаково прозвучат соль-бемоль (G♭) и фа-диез (F♯‎), ми-бемоль (Е♭) и ре-диез (D♯‎), ре-бемоль (D♭)и до-диез (С♯‎) и т.д. Явление, когда одинаковые по высоте звуки имеют разные названия и обозначаются разными символами, называется энгармонизмом звуков.

Для простоты восприятия мы продемонстрировали это явление на примере ступеней (нот), между которыми имеется 2 полутона. В других случаях, когда между основными ступенями всего 1 полутон, это менее наглядно. К примеру, фа-бемоль (F♭) – это чистая нота ми (Е), а ми-диез (Е♯‎) – это чистая нота фа (F). Тем не менее в специальной литературе по теории музыки могут встретиться и такие обозначения как фа-бемоль (F♭) и ми-диез (Е♯‎). Вы теперь знаете, что они значат.

Сегодня вы изучили основные физические свойства звука вообще и свойства музыкального звука в частности. Вы разобрались с музыкальной системой и звукорядом, ступенями звукоряда, октавами, тонами и полутонами. Также вы разобрались в нотно-октавной системе и теперь готовы пройти проверочный тест по материалу урока, в который мы включили наиболее важные с практической точки зрения вопросы.

Общая характеристика звуковых волн

Рассмотрим вопросы, что такое звуковая волна и как она воспринимается человеческим ухом. Звуковая волна является продольной, она при попадании в раковину уха вызывает колебания ушной перепонки с определенной частотой и амплитудой. Также можно представлять эти колебания как периодические изменения давления в микрообъеме воздуха, прилегающего к перепонке. Сначала оно увеличивается относительно нормального атмосферного давления, а затем уменьшается, подчиняясь математическим законам гармонического движения. Амплитуда изменений сжатия воздуха, то есть разница максимального или минимального прессинга, создаваемого звуковой волной, с атмосферным давлением пропорционально амплитуде самой звуковой волны.

Многие физические эксперименты показали, что максимальные давления, которые может воспринимать человеческое ухо без нанесения ему вреда, составляют 2800 мкН/см2. Для сравнения скажем, что атмосферное давление вблизи поверхности земли равно 10 млн мкН/см2. Учитывая пропорциональность давления и амплитуды колебаний, можно сказать, что последняя величина даже для самых сильных волн является незначительной. Если говорить о длине звуковой волны, то для частоты в 1000 колебаний в секунду она будет составлять тысячную долю сантиметра.

Самые слабые звуки создают колебания давления порядка 0,001мкН/см2, соответствующая амплитуда колебаний волны для частоты 1000 Гц составляет 10-9 см, при этом средний диаметр молекул воздуха составляет 10-8 см, то есть ухо человека является чрезвычайно чувствительным органом.

Виды звуковых полей

http-equiv=»Content-Type» content=»text/html;charset=UTF-8″>yle=»text-align: justify;»>Звуковые поля имеют несколько  видов. Конечно, они излучаются различными источниками (рояль, вокалист, оркестр, ансамбль и т. п.) и могут иметь очень сложную структуру. Но для упрощения анализа структуры звуковых полей применяют обычно следующую классификацию: звуковое поле сферической волны, плоской и цилиндрической.

Звуковое поле сферической волны

Перед тем как рассматривать этот вид, скажем ещё о двух важных понятиях (фронт звуковой волны и звуковой луч).

Фронт звуковой волны — это поверхность, соединяющая точки среды, находящиеся в одинаковой фазе колебаний (например, круги на воде)

Звуковой луч — это линия, перпендикулярная фронту волны и направленная в сторону распространения звуковых волн.

Итак, сферическая волна относится к области низких частот, где длина звуковой волны велика по отношению к размеру источника. Например, на частоте 40 Гц длина волны составляет 8,5 метров. Практически любой источник звука будет иметь размеры меньше, чем эта длина волны.

Можно считать, что источник сигнала является точечным, а звуковые трёхмерные волны, расходящиеся от него сферические. (См. фото выше)

Фронт такой волны представляет сферу, где в центре источник звука, а звуковые лучи совпадают с радиусами.

Мощность (энергия), излучаемая таким точечным источником, распространяется равномерно по всем направлениям и не меняется при удалении от источника (если только не брать потери на вязкость, теплопроводность и др.)

Звуковое давление в поле сферической волны убывает пропорционально квадрату расстояния от источника.

Это очень важный аспект при записи музыкальных инструментов. Если предположить, что интенсивность меняется одинаково во всех направлениях, то сигналы равноудалённых микрофонов от источника, при прочих равных условиях, одинаковы.

Кроме этого, на низких частотах вблизи источника сигнала звуковое поле сферическое, а давление в нём меняется с изменением расстояния. При близком расположении направленных микрофонов возникает известный эффект (proximity — эффект ближней зоны) — получается гипертрофированная передача низких частот, что в большинстве случаев нежелательно, если только так не задумано автором. Происходит это потому, что разность давлений, действующая на обе стороны диафрагмы, усиливается ещё и разницей в уровнях звукового давления на фронтальной и тыльной стороне микрофона, так как они находятся на разных фронтах сферической волны. Поэтому направленные микрофоны воспринимают низкие частоты по-разному, в зависимости от их расстояния до источника.

Звуковое поле плоской волны

Среднечастотные и тем более высокочастотные составляющие порождают плоские волны.

Когда длина волны становится намного меньше размера источника и когда расстояние до источника увеличивается, то сферическую волну приближенно можно заменить плоской.

Фронт звуковой волны в плоской волне — это звуковые лучи, которые идут параллельно и при этом интенсивность и звуковое давление не зависят от расстояния.

На практике это означает, что звуковое давление уменьшается с расстоянием за счет различных потерь (вязкость среды, теплопроводность и т. д.)

Звуковое поле от любого источника на больших расстояниях можно считать плоским.

Звуковое поле цилиндрической волны

Если источник сильно вытянут в одном направлении (например, звуковая колонка), то вокруг него образуется звуковое поле цилиндрической волны.

Фронт звуковой волны представляет цилиндрические увеличивающиеся поверхности, а звуковые лучи направлены по радиусу цилиндра.

Вывод

Условно можно запомнить следующие:

  • на низких частотах и на достаточно близких расстояниях вокруг источника звука образуется сферическая волна
  • на высоких частотах и на достаточно больших расстояниях эти же источники создают плоскую звуковую волну
  • звуковое давление изменяется от расстояния и зависит от структуры звукового поля (особенно это актуально с описанным выше proximity — эффектом ближней зоны).

Спасибо, что читаете New Style Sound. Подписывайтесь (RSS-лента) и делитесь с друзьями.

Влияние звука на сахар

Первый опыт демонстрирует воздействие низких звуков (басов) на воду. В результате хаотичных биений звуковых волн, колебания которых не совпадают, образуя антирезонанс, на воде образуется беспорядочная рябь.

Второй опыт демонстрирует воздействие высоких звуков на сахар. Большая часть данного примера сопровождается звуком, который воспринимается слухом. Таким образом, – это ещё не ультразвук (который воспринимается человеком только на уровне подсознания), а используется обычный высокочастотный звук; лишь в конце эксперимента он переходит в сверхвысокое звучание. Соответственно – здесь изначальная частота звука не превышает 20000 Гц (= 20 кГц), примерный диапазон частот – от 100 Гц до 30 кГц.

С ультразвуком (при частоте колебания выше 20 кГц) происходило бы нечто подобное, с той лишь разницей, что длина волны была бы намного меньше, а узоры мельче (что-то похожее на рябь на воде).

Ультразвук с точки зрения физики – это колебание частиц упругой среды. Ученым хорошо известно, что ультразвук способен изменить мембрану клеток (вплоть до летального исхода), разрушить здание и т.п.; в области биофизики и медицины этой теме посвящено немало мыслей. Именно для подтверждения таких выводов представлен данный пример, процесс которого рассматривается ниже:

На вибрационный стенд крепится пластина, затем генератором частот задаётся частота колебаний. Происходящее далее описать несложно – частицы сахара собираются в областях с наименьшей амплитудой. Этот интерферентный узор, названный фигурами Хладни (в честь учёного – Эрнста Хладни), образуется при «встрече» звуковых волн, исходящих из разных точек. Волны при этом могут исходить непосредственно от источника (в данном случае – генератора) или являться отражением первичных волн.

Таким образом, подобный эффект является результатом наложения друг на друга сжатых или разреженных воздушных участков. Как уже известно, в момент образования звучания распространяющиеся сгустки воздуха (волны) чередуются друг с другом с различной частотой.

Хорошо заметно следующая взаимосвязь: чем выше звук, тем мельче узоры рисунка. Меняется частота звука, меняется и форма фигур. В данном случае наглядность опыта зависела не только от источника звука (расположение источника относительно поверхности с сахаром), или от того, как сам ультразвук направлен на пластину, но и от поверхности на которой рассыпан сахар.

Здесь тип поверхности – тонкая пластина – позволяет ультразвуку максимально эффективно действовать на эту поверхность. В результате стол с пластиной интенсивно подвергается волновому колебанию, и, соответственно, подвергает аналогичным процессам частицы сахара. Думается, что если поставить колонку на пол и рядом рассыпать сахар – эффект будет не таким ярким.

Но в любом случае, – звук, как волновое колебание, однозначно и эффективно действует на любой живой организм, в т.ч. и на человеческий. В свете вышерассмотренного следует осторожнее относиться к выбору музыки для прослушивания

Очень важно всегда сознательно и целенаправленно определять параметры её звучания, такие как громкость, продолжительность, насыщенность низкими частотами и т.п

1.1. Упругие и электромагнитные волны

Несмотря на большое многообразие волновых процессов, в при-роде можно сформулировать следующее определение, справедливое для любых видов волн.

Волной называется любое изменение (возмущение) состояния среды, распространяющееся с конечной скоростью и несущее энергию.

Все волны можно разделить на два типа: упругие и электромагнитные. Упругие (другое название акустические) волны – это волны, связанные с колебаниями частиц при механической деформации упругой среды (жидкой, газообразной, твердой). При этом имеет место перенос энергии упругой деформации при отсутствии переноса вещества. Примером акустических волн являются звуковые волны, представляющие собой чередующиеся области повышенного и пониженного давления воздуха, расходящиеся от источника звука. В акустической волне частицы среды совершают колебания вокруг точки покоя.

Волна, у которой вектор колебательной скорости параллелен направлению распространения, называется продольной волной. Если невозмущенную среду представить в виде регулярной структуры (рис. 1.1,а),

1.1, а)

то в случае продольной волны области сжатия и разрежения будут чередоваться вдоль направления распространения волны (рис. 1.1,б).

1.1, б)  1.1,в)

Частицы среды колеблются в направлении, совпадающем с направлением распространения волны. Примером продольной волны можно считать звуковую волну, расходящуюся от акустической системы усилителя звуковых частот. Если частицы среды под действием волновой энергии совершают колебания в направлении, перпендикулярном распространению волны, такая волна называется поперечной или сдвиговой (рис.1.1,в).
Колебание струны можно рассматривать как стоячую поперечную волну. Акустическое поле можно рассматривать как совокупность упругих волн. Акустические поля описываются скалярными функциями и называются скалярными полями.

Понятие электромагнитного поля определено комитетом технической терминологии.

Электромагнитное поле – это особый вид материи, отличающийся непрерывным распределением (электромагнитные волны) и обнаруживающий дискретность структуры (фотоны), характеризующийся способностью распространяться в вакууме (в отсутствие сильных гравитационных полей) со скоростью, близкой к 3.10~8 м/с, оказывающий на заряженные частицы силовое воздействие, зависящее от их скорости. Частным случаем электромагнитного поля являются свет и радиоволны.

Неслышимые звуки

Звук, который воспринимается или слышится ухом человека, имеет частоты в диапазоне 20-20 000 Гц. Звуковые волны с более низкими частотами называют инфразвуком, а с выше — ультразвуком.

Когда были созданы высокочувствительные приемники звуков для различных частот, оказалось, что инфра- и ультразвуки так же распространены в природе, как и слышимые звуки.

Инфразвук

Инфразвук возникает при работе промышленных установок, автомобилей, тракторов и бытовых приборов. Например, сельскохозяйственные тракторы на резиновом ходу и грузовики имеют максимальные вибрации в диапазоне 1,5-3,5 Гц, гусеничные тракторы — около 5 Гц. Музыкальный орган так же может излучать инфразвук. Могут излучать звуки инфракрасных частот всевозможные взрывы и обвалы.

Чувствительные приемники ультразвука показали, что он входит в состав шума ветра и водопадов, в состав звуков, излучаемых некоторыми животными.

Механизм восприятия инфразвука и его влияние на физиологическое состояние человека пока полностью не изучены. Такие звуки неслышимые, однако в результате их воздействия на организм человека появляются повышенная нервозность, чувство страха, приступы тошноты. Иногда из носа и ушей идет кровь.

Свойство инфразвука вызывать страх используется полицией в ряде стран мира. При необходимости разогнать толпу полицейские включают мощные генераторы и вызывают у многих людей неосознанное чувство страха, желание поскорее уйти оттуда, где действует инфразвук.

Ультразвук

Ультразвуковые волны можно получить с помощью специальных высокочастотных излучателей. Узкий пучок ультразвуковых волн в процессе распространения очень мало расширяется. Благодаря этому ультразвуковую волну можно излучать в заданном направлении.

О ультразвуке не раз упоминается на уроках биологии — дельфины и летучие мыши используют его для эхолокации, то есть определения положения окружающих предметов.

Оказывается, что многие насекомые воспринимают ультразвук. Восприятие ультразвука в диапазоне частот до 100 кГц — способность многих грызунов. Собаки воспринимают ультразвук с частотой до 40 кГц.

Ультразвук сегодня широко применяют в различных отраслях науки и техники. Например, с его помощью измеряют глубину моря. С корабля посылают ультразвуковой сигнал и фиксируют промежуток времени до возвращения сигнала, отраженного от дна. Зная скорость звука в воде, можно определить расстояние до дна. Прибор для измерения глубины дна называют эхолотом.

С помощью ультразвука «просвечивают» металлические изделия для выявления в них скрытых дефектов — посторонних включений, трещин или пустот.

Ультразвук широко используют и в медицине — как для обследования больного, так и для его лечения. Лечебный эффект ультразвука основан на том, что он вызывает внутренний разогрев тканей организма.

Фильтр ConvolverNode

линейную свёрткуимпульсную характеристикубыстрого преобразования Фурьестатьяреверберации

Материалы

  • О понятии громкости в цифровом представлении звука и о методах её повышения
  • Звук
  • Амплитуда
  • Частота
  • Цифровой сигнал
  • Аналоговый сигнал
  • Цифровая обработка сигналов
  • Интерактивный пример сложения волн и оцифровки сигнала
  • Аналогово-цифровой преобразователь
  • Цифро-аналоговый преобразователь
  • Импульсно-кодовая модуляция
  • Формат PCM WAV
  • Сэмплирование (en)
  • Частота дискретизации
  • Теорема Котельникова
  • Частота Найквиста
  • Глубина дискретизации
  • Alias
  • Децибел
  • Строение уха
  • Звуковое давление
  • Воспринимаемая громкость
  • Клиппинг
  • ReplayGain описание
  • ReplayGain спецификация
  • Быстрое преобразование Фурье, вики, wiki
  • Импульсная характеристика
  • Фазо-частотная характеристика
  • Амплитудо-частотная характеристика
  • Фильтр с бесконечной импульсной характеристикой
  • Фильтр с конечной импульсной характеристикой
  • Биквадратный фильтр (en)
  • BiquadFilterNode
  • Web Audio API
  • Вейвшейпер
  • Дисторшн
  • Овердрайв
  • Фузз
  • Реверберации
  • Свёртка
  • Эквалайзер

AudiophileforgottenUPD. Поправил раздел про фильтрацию и добавил ссылки по разным типам фильтров

Спасибо Денису deniskreshikhin Крешихину и Никите merlin-vrn Киприянову за то, что обратили внимание.

Презентация на тему: » Свойства звука. Звуковые явления.. Повторение. 1.Какие волны называются звуковыми? 2.Какие частоты может слышать человеческое ухо? 3.Приведите примеры.» — Транскрипт:

1

Свойства звука. Звуковые явления.

2

Повторение. 1. Какие волны называются звуковыми? 2. Какие частоты может слышать человеческое ухо? 3. Приведите примеры источников звука. 4. Какие источники звука являются искусственными, какие естественными? 5. Звуковые волны являются продольными или поперечными? 6. Сравните скорость распространения звука в газах, жидкостях и твердых телах. 7. От чего зависит скорость звука?

3

Громкость звука Громкость звука зависит от амплитуды колебаний не прямо пропорционально, и при равной амплитуде человек воспринима­ет звуки с частотой от 1 к Гц до 5 к Гц как более громкие. Гром­кость, вообще говоря, сложным образом зависит от звукового давления (интенсивности звука). Измеряется в фонах или в сонах. Сон — это единица условной шкалы громкости звука. 1 сон соответствует тихому разговору, а 250 сон; — работающему реак­тивному двигателю. Начиная с 200 сон, звук вызывает ощуще­ния боли. Громкость звука можно увеличить, используя рупор или мегафон. Кроме того, рупор можно использовать и для уси­ления принимаемой звуковой волны.

4

Высота звука Высота звука — качество звука, определяемое человеком субъ­ективно на слух и зависящее в основном от частоты звука. С уве­личением частоты высота звука увеличивается. Звуковую волну определенной частоты иначе называют музыкальным тоном. Поэтому о высоте звука часто говорят как о вы­соте тона. Основной тон с «примесью» нескольких колебаний других частот образует музыкальный звук. От состава каждого сложного звука зависит его тембр. При обычной речи в мужском голосе встречаются колебания с частотой от 100 до 7000 Гц, а в женском — от 200 до 9000 Гц. Наиболее высокочастотные колебания входят в состав звука согласной «с».

5

Звуковые явления. Звуковой резонанс Поглощение звука Отражение звука

6

Звуковые явления. Эхо. Эхо это звуковые волны, отраженные от какого-либо препятствия (зданий, холмов, леса и т. п.) и возвратившиеся к своему источнику. Если до нас доходят звуковые волны, последовательно отразившиеся от не­ скольких препятствий и разделенные интервалом времени t> мс, то возникает многократное эхо. Некоторые из таких эхо приобрели всемирную известность. Так, например, скалы, раски­нутые в форме круга возле Адерсбаха в Чехии, в определенном месте троекратно повторяют 7 слогов, а в замке Вудсток в Англии эхо отчетливо повторяет 17 слогов! Название «эхо» связано с именем горной нимфы Эхо, которая, согласно древнегреческой мифологии, была безответно влюблена в Нарцисса. От тоски по возлюбленному Эхо высохла и окаменела, так что от нее остался лишь голос, способный повторять оконча­ния произнесенных в ее присутствии слов.

7

Звуколокация.

8

Решение задач. 1. В поле звук распространяется на значительно большее рас­стояние, чем в лесу. Почему? 2. Кто п полете быстрее машет крыльями: муха, шмель или ко­мар? Как это можно определить? 3. При переходе из одной среды в другую длина звуковой волны увеличилась в три раза. Как при этом изменилась высота звука? 4. Опытные шоферы оценивают давление воздуха в баллоне колеса автомашины по звуку, получаемому при ударе по баллону металлическим предметом. Как зависит высота звука, издаваемого баллоном, от давления воздуха в нем? 5. Зачем басовые струны гитары обматывают металлической проволокой?

9

Решение задач. 6. Герой одного из рассказов О. Г’енри ударил поросенка с такой силой, что поросенок полетел, «опережая звук собственного визга». С какой скоростью должен был лететь поросенок, чтобы этот случай был бы реальным? 7. На высоте 4 км над наблюдателем пролетел реактивный самолет со скоростью 510 м/с. На каком расстоянии от наблюдателя будет находиться самолет, когда наблюдатель услышит звук? 8. Зачем будку суфлера в театре обивают войлоком? 9. Какова длина звуковой волны в воде, вызываемой источни­ком колебаний с частотой 200 Гц, если скорость звука в воде равна 1450 м/с? 10. При измерении глубины моря под кораблем при помощи эхолота оказалось, что моменты отправления и приема ультразвука разделены промежутком времени 0,6 с. Какова глубина моря под кораблем?

Нотно-октавная система

В целом диапазон потенциально слышимых человеческим ухом звуков охватывает почти 11 октав. Т.к. наш курс посвящен музыкальной грамоте, нас интересуют только музыкальные звуки, т.е. примерно 9 октав. Чтобы было проще запомнить октавы и соответствующие им диапазоны звуковысотности, рекомендуем идти сверху вниз, т.е. от верхнего диапазона звуков к нижнему. Звуковысотность в герцах по каждой октаве для удобства запоминания укажем в двоичной системе.

Октавы (названия) и диапазоны:

  • Пятая октава – 4096-8192 Гц.
  • Четвертая октава – 2048-4096 Гц.
  • Третья октава – 1024-2048 Гц.
  • Вторая октава – 512-1024 Гц.
  • Первая октава – 256-512 Гц.
  • Малая октава – 128-256.
  • Большая октава – 64-128 Гц.
  • Контроктава – 32-64 Гц.
  • Субконтроктава – 16-31 Гц.

Прочие октавы в контексте музыкальных звуков рассматривать не имеет смысла. Так, самая высокая нота у мужчин – это «фа диез» 5-й октавы (5989 Гц), и установлен данный рекорд Амирхоссейном Молаи 31 июля 2019 года в городе Тегеран (Иран) . Певец Димаш из Казахстана дотягивается до ноты «ре» в 5-й октаве (4698 Гц). А звуки высотой ниже 16 Гц человеческое ухо воспринимать не может. Полную таблицу соответствия нот частотам и октавам вы можете изучить по нижеследующей картинке:

Фиолетовым цветом выделена 1-я нота первой октавы, т.е. нота «до», а зеленым – нота «ля» первой октавы. Именно на нее, т.е. на частоту 440 Гц, по умолчанию предустановленны все тюнеры для измерения высоты звука.

Ноты в октаве: варианты обозначения

Сегодня используются разные способы, чтобы обозначить принадлежность ноты (высоты звука) к разным октавам. Самый простой способ – записать названия нот, как они есть: «до», «ре», «ми», «фа», «соль», «ля», «си».

Второй вариант – это так называемая «нотация Гельмгольца». Такой способ предполагает обозначение нот латинскими буквами, а принадлежность к октаве – цифрами. Начнем с нот.

Ноты по Гельмгольцу:

  • С = «до».
  • D = «ре».
  • E = «ми».
  • F = «фа».
  • G = «соль».
  • A = «ля».
  • B = «си».

Теперь к октавам. Ноты в первой-пятой октавах записываются маленькими латинскими буквами и обозначаются цифрами от 1 до 5. Ноты малой октавы – маленькими латинскими буквами без цифр. Запомните ассоциацию: малая октава – маленькие буквы. Ноты большой октавы записываются большими латинскими буквами. Запомните: большая октава – большие буквы. Ноты контроктавы и субконтроктавы записываются большими буквами и цифрами 1 и 2 соответственно.

Ноты в октавах по Гельмгольцу:

  • Пятая октава – c5-b5.
  • Четвертая октава – c4-b4.
  • Третья октава – c3-b3.
  • Вторая октава – c2-b2.
  • Первая октава – c1-b1.
  • Малая октава – c-b.
  • Большая октава – С-В.
  • Контроктава – С11.
  • Субконтроктава – С22.

Если кого-то удивляет, почему первая нота октавы обозначается не первой буквой латинского алфавита, расскажем, что когда-то давно отсчет начинали с ноты «ля», за которой и закрепили обозначение А. Однако потом решили начинать октавный счет с ноты «до», за которой уже закрепилось обозначение С. Во избежание путаницы в нотных записях, решили сохранить буквенные обозначения нот, как есть.

Более подробно с нотацией Гельмгольца и другими его идеями вы можете ознакомиться в его работе, доступной на русском языке под названием «Учение о слуховых ощущениях как физиологическая основа для теории музыки» .

И, наконец, научная нотация, которую разработало «Американское акустическое общество» в 1939 году и которая тоже актуальна до сих пор. Ноты обозначаются заглавными латинскими буквами, а принадлежность к октаве – цифрами от 0 до 8.

Научная нотация:

  • Пятая октава – С8-В8.
  • Четвертая октава – С7-В7.
  • Третья октава – С6-В6.
  • Вторая октава – С5-В5.
  • Первая октава – С4-В4.
  • Малая октава – С3-В3.
  • Большая октава – С2-В2.
  • Контроктава – С1-В1.
  • Субконтроктава – С0-В0.

Обратите внимание, что цифры не совпадают с названиями октав от первой до пятой. Это обстоятельство часто вводит в заблуждение даже производителей специализированных программ для музыкантов

Поэтому в случае сомнений всегда проверяйте звучание и высоту ноты тюнером. Для этого скачайте мобильное приложение Pano Tuner и разрешите ему доступ к микрофону.

Осталось добавить, что впервые система научной нотации была обнародована в июльском номере The Journal of the Acoustical Society of America (журнале «Американского акустического общества») .

Теперь обобщим все принятые на сегодняшний день системы обозначения нот для каждой октавы

Для этого еще раз продублируем уже знакомую вам картинку с клавиатурой фортепиано и обозначениями ступеней звукоряда (нот), но уже с рекомендацией обращать внимание на цифровые и буквенные обозначения:

И, наконец, для максимально полного понимания базовых сведений теории музыки, нам следует разобраться с разновидностями тонов и полутонов.

Музыкальные звуки

К музыкальным принято относить звуки, обладающие ярко выраженной высотой. В таком звуке, помимо основного тона, выделяются его гармоники — компоненты, частоты которых кратны частоте основного тона. Например, если частота основного тона 220 Гц, его гармоники будут иметь частоты 440 Гц, 660 Гц, 880 Гц и т.д. Колебания струны в струнном, и колебания плотности воздушного столба в духовом инструменте создают звуки именно такого характера — с выраженными гармониками, подчеркивающими в нашем восприятии основной тон. В некоторых случаях гармоники даже вызывают иллюзию отсутствующего основного тона (резидуальные звуки).

Природа возникновения гармоник довольна проста — например, колебание струны имеет сложный характер, в нем кроме движения целой струны, создающего основной тон, можно выделить движение её половин, третей, четвертей и т.д., каждое их которых создает гармонику соответствующей частоты:

Формула Лапласа

Первые попытки рассчитать значение скорости звука предпринял Ньютон, предположив равенство упругости воздуха атмосферному давлению pатм. В таком случае значение скорости звука в воздушной среде – менее 300 мс, в то время как истинная скорость звука при нормальных условиях (температура  °С и давление 1 атм) равна 331,5 мс, а скорость звука при температуре 20 °С и давлении 1 атм составит 343 мс. Лишь по прошествии более ста лет было показано, почему предположение Ньютона не выполняется. Французский физик П. Лаплас указал, что ньютоновское видение равносильно предположению о быстром выравнивании температуры между областями разрежения и сжатия, и невыполнение его связано с плохой теплопроводностью воздуха и малым периодом колебаний в звуковой волне. В действительности между областями разрежения и сжатия газа появляется разность температур, существенным образом влияющая на упругие свойства. Лаплас, в свою очередь, выдвинул предположение, что сжатие и разрежение газа в звуковой волне происходят в соответствии с адиабатическим законом: в отсутствии влияния теплопроводности. В 1816 году физик вывел формулу, предназначенную для расчета скорости звуковой волны в воздухе и получившей название формулы Лапласа.

Определение 5

Формула Лапласа для определения скорости звука имеет запись:

υ=γpρ.

Где p является значением среднего давления в газе, ρ – средней плотности, а γ есть некоторая константа, находящаяся в зависимости от свойств газа.

В нормальных условиях скорость звука, рассчитанная по формуле Лапласа, равна υ=332 мс.

В термодинамике имеется доказательство, что константа γ представляет собой отношение теплоемкостей при постоянном давлении Cp и постоянном объеме CV .

Формула Лапласа может быть записана несколько иначе, если использовать уравнение состояния идеального газа. Таким образом, окончательный вид формулы для определения скорости звука будет такой:

υ=γRTM.

В данной формуле T – абсолютная температура, M – молярная масса,R=8,314 Джмоль·К – универсальная газовая постоянная. Скорость звука находится в сильной зависимости от свойств газа: скорость звука тем больше, чем легче газ, в котором звуковая волна получает распространение.

Для наглядности приведем некоторые примеры.

Пример 1

Когда звук распространяется в воздушной среде (M=29·10–3 кгмоль) при нормальных условиях: υ=331,5 мс;

Пример 2

Когда звук распространяется в гелии (M=4·10–3 кгмоль): υ=970 мс;

Пример 3

Когда звук распространяется в водороде (M=2·10–3 кгмоль): υ=1270 мс.

В жидкостях и твердых телах скорость звуковых волн еще больше. В воде, например, υ=1480 мс (при 20 °С), в стали υ=5–6 кмс.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector